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Abstract 

The Mott formula relating the electron scattering 
factor to that for X-rays is inaccurate in its numerical 
form in the small-angle region. Effects of the inac- 
curacy on both kinematic and dynamical diffraction 
have been investigated. Some artifacts arising from 
the inaccuracy have been found in simulated electron 
microscopy images. A modified form for the Mott 
formula, which minimizes the error, is proposed. 
However, for any accurate and reliable calculation 
only those electron scattering factors derived directly 
from the atomic potential can be used. 

Introduction 

For all the theories and calculations concerned with 
the dynamical interaction between electrons and crys- 
talline materials, a knowledge of the crystal potential 
is essential. Among all the other ways of setting up 
the crystal potential, the most commonly used method 
is the one using atomic scattering factors f (s)  which 
have been computed and tabulated for elements 
under various approximations (Doyle & Cowley, 
1973). It is the purpose of this paper to make a survey 
of the procedures for setting up the crystal potential, 
the approximations used and their effects on the 
calculated potential field as well as on the final simu- 
lated lattice images. We do not address the fact that 
tabulated scattering factors are approximate in that 
they refer to isolated atoms or ions and do not take 
into account the redistributions of electrons in crys- 
tals. It will become evident that the current practices 
involve errors, even within the limitations of the 
assumption of isolated-atom scattering factors. The 
dynamical and surface calculations require that much 
more attention be paid to the accuracy of the atomic 
scattering factors than in the case of kinematic 
Scattering. 

Computation 

The atomic scattering factor for electrons is defined 
as the Fourier transform of the atomic potential, 

f~( s) = (2 ~rme/ h2) F[ ~o( r) ] 
oo 

=(81r2me/h 2) ~ ~o(r)[sin(sr)/sr]r2dr. (1) 
0 
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Here F denotes Fourier transform, s = 4zrh -1 sin 0 
and ~o(r) is the atomic potential for isolated spheri- 
cally symmetrical atoms or ions. 

A further formulation for obtaining the atomic 
scattering factor for electrons is that due to Mott & 
Massey (1965) by the use of Poisson's equation relat- 
ing the potential and charge-density distribution, 

fe(s)=(8~2me2/h2)[Z- fx(s)] /s  2, (2) 

where fx  (s) is the atomic scattering factor for X-rays. 
A detailed calculation of the atomic scattering fac- 

tors requires the total wave function of an atom. 
However, the wave function is known exactly only 
for the hydrogen atom. Scattering factors published 
for all other atoms are approximate, and are reliable 
only insofar as the electron wave function employed 
in the calculation is a reliable representation of the 
true wave function. Various methods of approximat- 
ing the total wave function of an atom have been 
developed. The relativistic Hartree-Fock equation 
(RHF) provides the most accurate generally calcu- 
lable atomic wave functions. The RHF equation given 
by Grant (1961) has been solved numerically and 
programmed by Coulthard (1967) with the magnetic- 
interaction terms and off-diagonal Lagrange param- 
eters omitted. Calculations performed by Doyle & 
Turner (1968) yield the total charge densities p(r) 
and atomic potential ~o(r), and therefore the atomic 
scattering factors for X-rays and electrons. 

The applications of these numerical discrete scat- 
tering factors to the calculation of electron diffraction 
and electron microscopy image simulation are incon- 
venient. It was considered desirable to express fe(s) 
for each element by a single analytical expression 
from which values could be calculated for any values 
of s and any electron energy. Analytical approxima- 
tions to f~(s), of the form 

f~(s) = i ai exp (-bis2)+ c (3) 
i = 1  

where ai, bi and c are parameters determined by curve 
fitting procedures, were originally introduced by 
Vand, Eiland & Pepinsky (1957) for X-ray scattering 
factors, and by Smith & Burge (1962) for electron 
scattering factors. 

Since values of fx  (s) are generally available in the 
literature, and also because our very limited knowl- 
edge of the potential field in crystals is an even greater 
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obstacle to the derivation of useful values of fe(s) 
than it is to the derivation of useful values of fx(s) 
(Ibers, 1958), the Mott formula (2) has been used as 
a basis for most of the dynamical calculations to 
obtain the electron scattering factors. 

The Mott formula, in its approximate numerical 
form, can be written as 

(4) 
The limiting expression of the formula, as s 

approaches zero, takes the form 

f¢(O) = lim (87r2me2/h 2) 
$ - - ~ 0  

Finite errors are unavoidable in the numerical 
calculations of the X-ray atomic scattering factors 
and in the Gaussian curve-fitting procedures. The 
limiting expression (5) turns out to be divergent as 
s = 0 because, in its analytical approximate form, 

fx(O) = ~ a, + c ~ Z. (6) 
i = 1  

An improved form of the Mott formula which takes 
account of the fact that fx (0) = Z can be introduced: 

fe( S) = (87r2me2/ h 2) 

=(8~'2me2/h2){ ~,=~ a'[1-exp(-b~s2)]}/s2' 

of the Mott formula. As can be seen from Fig. 1, this 
formula, like the original approximate numerical 
Mott formula, works very well for s greater than 0.15 
but becomes less accurate and begins to deviate from 
the HFP electron scattering factor when s become 
smaller than 0.13. The reason for these deviations lies 
in the nature of the Mott formula. From (7) it is 
obvious that if the error for the X-ray scattering factor 
calculation is of the order of 10 -2, then for large s 
the error for the electron scattering factor will be of 
the same order as for the X-ray case but it will become 
more and more severe as s goes to zero. For s - 10 -2, 
the error in the electron scattering factor will then be 
of the order of 1. Compared with its value at s = 0, 
this is a 10% error and is expected to be important 
under certain circumstances. 

The potential fields resulting from the three types 
of electron scattering factors are shown at Fig. 2 for 
a single Au atom. The most remarkable differences 
between the fields are in the averaged potential. The 
averaged potential from the Mott formula and X-ray 

0 .1515E*02 .  a) 

0 .52 i5E+01  I I t I 

7) O.IOOOE-OI O.B794E Oi  0 . i 259E÷00  O iO38E+O0 0 .24 i 8E+00  0 .2997E÷O0 

with the corresponding limiting form as s -  0, 

fe(O) = (8rr2rne2/ h2)( ~i=, aib~). (8) 

The divergence problem is hence avoided and the 
atomic scattering amplitude takes only finite values 
for small-angle scattering. 

The electron scattering factors as functions of the 
parameter s are shown in Fig. 1. Fig. l ( a )  is obtained 
from (4). As s goes to the small-angle region of the 
same order as that of the discrepancy between fx (0) 
and Z, the electron scattering factor begins to increase 
enormously and is divergent as s =0.  Curve (b) is 
obtained from (3) by using the Gaussian fitting par- 
ameters from Doyle & Turner (1968). The parameters 
are based on the numerical calculations from the 
relativistic Hart ree-Fock equation and are considered 
as the most reliable representation of the true electron 
scattering factors. Hereafter these are called the HFP 
(HF, parameterized) electron scattering factors. 
Curve (c) is from (7), the improved numerical form 

Fig. 1. The electron scattering factors of an Au atom vs s. Curve 
(a) is from the Mott formula, (b) from the fitting parameters 
for electron scattering and (c) from the improved Mott formula. 

(a) 
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0 .3984E-O !  0.4512E+0% 0.8184E~0% 0 .~226E+02  0 .1633E÷02  02040E+02  

Fig. 2. Potential distributions of a single Au atom. (a), (b) and 
(c) correspond to curves (a), (b) and (c) in Fig. 1 respectively. 
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scattering factor is of the order of - 8  (Figs. 2a, c), 
while the value from the HFP electron scattering 
factor is about 0 (Fig. 2b). This difference in the 
average potential values is a direct consequence of 
the discrepancies in the atomic scattering factors at 
the small-s region, because the zeroth Fourier com- 
ponent of the potential field corresponds to the 
averaged potential. 

Figs. 3 and 4 are high-resolution electron micro- 
scopy (HREM) images simulated by the multislice 
method (Cowley & Moodie, 1957). The electron scat- 
tering factors from (7) are used in Figs. 3 (a ) - (c )  and 
4(a) - (c ) ,  the scattering factors from (5) are used in 
Figs. 3 ( d ) - ( f )  and 4 ( d ) - ( f ) ,  while Figs. 3 (g) - ( i )  and 
4(g)-( i )  are obtained from the HFP electron scatter- 
ing factors. The simulations have been done for 
100 keV electrons and a gold crystal with the electron 
beam along the (110) direction. Fig. 3 shows simulated 
images for a crystal of 28-9/~ thickness. The differen- 
ces between the images from different types of scatter- 
ing factors are minor; the images are not sensitive to 
the scattering factor in the small-angle regio.n at this 

thickness. For the larger crystal thickness (Fig. 4) of 
289/~, the differences are very pronounced. Artifacts 
are produced by using improper scattering factors 
(Figs. 4b and e). 

Results and discussion 

It was shown in the previous section that if the speci- 
men is so thin and the real-space periodicity so small 
that the single scattering events are dominant in the 
diffraction processes, the final simulated images are 
not sensitive to the values of the electron scattering 
factor in the small-angle region. For scattering from 
a crystal only discrete values of the atomic scattering 
factor which correspond to the diffracted beams are 
important to the diffracted-beam intensities calcula- 
tion and the image simulation. For a crystal of period- 
icity A in real space, the smallest value of s which is 
significant to the kinematic,diffraction calculation is 
of the order of 1/A. If, further, this value of s is larger 
than the critical value So, a point above which the 
Mott formula is accurate in its numerical form, the 

(a) (b) (c) 

(d) (e) (J') 

(g) (h) (i) 

Fig. 3. Simulated electron microscopy images for Au in [110] orientation. The crystal thickness t = 29.8/~, and the defocus Af= -900 
(a, d and g), -1050 (b, e and h) and -1200 A (c, f and i). The images are calculated using equation (7) (a, b and c), equation (5) 
(d, e and f) and the HFP scattering factors (g, h and i). 
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inaccuracy in the scattering factors in the small-angle 
region below So will not affect the diffraction calcula- 
tion. On the other hand, if the periodicity A is large 
enough so that 1/A is less than So, the scattering 
factor at some points s below So will contribute to 
the final diffracted-beam intensities, and introduce 
some errors into the diffraction calculation. Some 
artifacts may then appear in the simulated images 
even in the kinematic diffraction case. 

Roughly speaking, the scattering factor in the 
small-angle region corresponds to the long-range 
atomic potential distribution. If the atoms are far 
apart then it will be those asymptotic values of the 
atomic potential that dominate the crystal potential 
in the region between the atoms. Further, in the 
Fourier space it is the small-angle components that 
are responsible for the asymptotic form of the atomic 
potential and therefore the crystal potential in the 
region between the atoms. It is expected that the 
computed crystal potential will be more sensitive to 
the accuracy in the atomic scattering factors in the 
small-angle region when a large atomic spacing is 
involved. 

Surface-image simulation (Marks, 1984; Peng & 
Cowley, 1986) is one of the situations in which both 
a large unit-cell dimension and large atomic spacings 
are involved. The periodic-continuation assumptions 
(Cowley, 1981) needs to be used in order to deal with 
the essentially non-periodic object, and a large unit- 
cell dimension normal to the surface must be used to 
avoid interference between the extended unit cells. 
The calculated crystal potential within one unit cell 
is shown in Fig. 5. Fig. 5(b) is obtained from the 
X-ray scattering factor and the original Mott formula. 
The divergence of the scattering factor at small values 
of s results in an artificial long tail in the atomic 
potential and, in the surface case, a long tail around 
the crystal surface. For some surface-potential-sensi- 
tive technique, like reflection electron microscopy 
(REM), this representation of the surface potential 
will not give the correct results. Fig. 5(c) is from the 
improved Mott formula. The resulting surface poten- 
tial is much better than in Fig. 5(b) but still gives a 
wrong potential value outside the surface in the 
vacuum and an incorrect averaged potential inside 
the crystal in comparison with that of Fig. 5(a), which 

(a) (b) (c) 

(d)  (e) (f)  

(g) (h) (i) 

Fig. 4. Simulated electron microscopy images as for Fig. 3 but with t = 289/~. Defocus values used in the simulation are A f = - - 8 8 0  
(a, d and g), -980 (b, e and h) and -1080]k  (c, f and i). 
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is obtained from the HFP electron scattering factor 
and is considered to be the most reliable representa- 
tion of the real case. 

For thick crystals the interaction between the 
incident electron beam and the crystal potential is 

0.5898E+01 

- . l t 7 3 E + 0 3  
I I 

0 .7959E-01 0.8224E+01 0.1637E+02 0.2451E+02 0.3266E+02 0.4080E+02 
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- .1236E+03 
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- . i 9 7 7 E + 0 3  
I I I 

0 . 7 9 6 9 E - 0 t  0 .8224E+0 0.1637E+02 0.2451E+02 0.3266E+02 0.4080E+1 

(c) 

Fig. 5. Surface potential distribution obtained from (a) the HFP 
electron scattering factor; (b) the X-ray scattering factor and 
Mott formula; (c) the improved Mott formula. 

characterized by multiscattering events. In con- 
sequence, the discrepancies in the small-s region 
between the electron scattering factors in the various 
approximations begin to affect the diffracted-beam 
intensities. The artifacts observed in Fig. 4 stem from 
the dynamical processes to which the small-angle 
scattering factor is important. 

Summary 

For larger unit-cell dimensions or for a thick crystal 
when the diffraction processes are dominated by 
multiscattering events, the inaccuracy in the atomic 
scattering factors in the small-angle region will affect 
the diffracted-beam intensities and result in some 
artifacts in the simulated electron microscopy images. 
The inaccuracy of the atomic scattering factors in the 
small-angle region can come from the improper use 
of the Mott formula in its numerical form and is 
emphasized by the nature of the formula. The result- 
ing effects in the electron-microscopy-images simula- 
tion are severe and misleading in certain circum- 
stances. For any accurate reliable dynamical calcula- 
tion and image simulation the use of parameterized 
X-ray scattering factors and the Mott formula must 
be avoided. Only the electron scattering factor derived 
directly from the atomic potential can be used (Doyle 
& Turner, 1968; Jiang & Li, 1984). 

Note  added  in p roo f  It should be noted that some, 
but not all, of the current multi-slice computer pro- 
grams include the improper use of the Mott formula. 
Michael O'Keefe incorporated the improved form of 
the Mott formula, equations (7) and (8), in the S H R L I  
program he wrote in 1980. 

This work was supported by NSF grant 
DMR8510059 and made use of the resources of the 
ASU facility for High Resolution Electron Micros- 
copy supported by NSF grant DMR8306501. 

References 

COULTHARD, M. A. (1967). Proc. Phys. Soc. 91, 44-49. 
COWLEY, J. M. (1981). Diffraction Physics, 2nd ed., pp. 243-245. 

Amsterdam: North London. 
COWLEY, J. M. & MOODIE, A. F. (1957). Acta Cryst. 10, 609-619. 
DOYLE, P. A. & COWLEY, J. M. (1973). International Tables for 

X-ray Crystallography, Vol. IV, pp. 152-154. Birmingham: 
Kynoch Press. (Present distributor D. Reidel, Dordrecht.) 

DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-399. 
GRANT, I. P. (1961). Proc. R. Soc. London Ser. A, 262, 555-576. 
IBERS, J. A. (1958). Acta Cryst. 11, 178-183. 
JIANG, J. S. & LI, F. H. (1984), Acta Phys. Sin. 33, 845-849. 
MARKS, L. D. (1984). Surf. Sci. 139, 28"1-298. 
MoTr, N. F. & MASSE',', H. S. W. (1965). The Theory of Atomic 

Collisions, 3rd ed., pp. 86-112. Oxford: Clarendon Press. 
PENG, L.-M. & COWLEY, J. M. (1986). Acta Cryst. A42, 545-552. 
SMITH, G. H. & BURGE, R. E. (1962). Acta Cryst. 15, 182-186. 
VAND, V., EILAND, T. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 

303-306. 



6 

Acta Cryst. (1988). A44, 6-7 

Normalization Factors for Spherical Harmonic Density Functions 

B Y  A N T O I N E  P A T U R L E  A N D  P H I L I P  C O P P E N S  

Department of  Chemistry, State University of  New York at Buffalo, Buffalo, N Y  14214, USA 

(Received 30 April 1987; accepted 7 July 1987) 

Abstract 

Normalization factors Nt,, for spherical harmonic 
density functions Ct~p defined by ~ Ntm ct,,,p[d'r= 
2 -  St0 have been derived for l-< 7, from both analyti- 
cal and numerical integration methods. 

Method of calculation 

From (1) and (2) Nt,~ is given by 

Ntm = 1/ It,,,J,,, or Nt,. = 2/ Iz,.Jm 

with 

(3) 

Introduction 

The increasing accuracy of X-ray diffraction data has and 
led to more widespread use of spherical atom scatter- 
ing formalisms. In the multipole formalism the atomic 
density is described by a series of real spherical har- 
monic functions ytmp with p - - +  or - ,  multiplied by 
a normalized radial function R(r) (Dawson, 1967; or 
Stewart, 1976; Hansen & Coppens, 1978; Kurki- 
Suonio, 1968; Price & Maslen, 1978). The functions 
Ylmp are defined as 

Yt,,w = NtmpP?(cos O) cos m~p for p = + (1) 
sinm~p f o r p = -  

where P?(cos 0) are the associated Legendre poly- 
nomials (Arfken, 1970). A number of authors (Price 
& Maslen, 1978; Hansen & Coppens, 1978) have 
normalized the angular functions Ytmp such that 

~]Ytmp(O,~p)[d~-=l if 1=0 
=2 i l l > 0 .  (2) 

We shall adopt the convention that density func- 
tions normalized according to (2) are labelled dt,,p 
(Coppens, 1988). 

For a monopole function (1 = 0) the normalization 
implies that a population parameter Poo--1 corre- with 
sponds to a population of one electron, while for the 
higher-order poles P~m = 1 implies that one electron 
has been shifted from the negative to the positive 
lobes of the function. Normalization factors Ntm for 
I-< 4 have been published (Hansen & Coppens, 1978). 
Though truncation of the expansion at 1 = 4 is often 
warranted, this is not always the case. In particular, 
in highly symmetric environments the lowest sym- 
metry-allowed multipole with m # 0 may be of higher 
order than four in I. An example is an atom at a site 
with sixfold symmetry, for which the first allowed 
multipole with non-zero m is Y66+. We report here on 
the values of Ntm as defined by (1) and (2) for 1-<7. 
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which gives 

+1 

It,,, = j" IP["(z) dz 
-1  

2rr 

Jm = .~ Icos m~[ d~ 
0 

2~ 

Jm - $ [sin m~o] d~, 
0 

J,. = 4  for m > 0; J,, =2zr for m = 0. 

Evaluation of It,. requires calculation of the roots 
of the equation P f ' ( z ) = 0  and integration between 
boundaries equal to the root values. This is most 
easily done when the associated Legendre functions 
are expressed as a series in powers of z: 

where 

P["(z )=(1/ l !2 ' ) (1-z2)" /2p , . , ( z ) .  (4) 

I 
ptm(z)= Z Ak Z2k-t-m 

k= k i 

(--1)k-'l! (2k)! 

Ak - -kT.() Z-ff)i ( 2 k _  l _  m) ! 

( l + m ) / 2  if l + m  odd 
ki = 

(1+ m + 1)/2 if 1+ m even. 

Thus pt,.(z) is a polynomial of degree 1 -m.  Since 
the exponent increases by two between successive 
terms either even or odd powers occur. 

The integration (2) requires evaluation of the roots 
of Pt,,. As it is not possible to find analytically the 
roots of a polynomial of degree larger than 4, the 
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